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1. Introduction

To protect a block cipher against classical cryptanalysis, the involved functions must
satisfy several criteria. Currently the best understood classes with respect to properties
required in cryptology are monomial and quadratic ones. However quadratic functions
are not suitable for many applications since they have small algebraic degree. Also the
use of monomial functions in block ciphers is often criticized, since they exploit only the
multiplicative structure of the underlying finite field.

The best resistance to differential attacks provide the almost perfect nonlinear (APN)
functions. The classification of APN functions is far from being achieved. In particular,
the existence of APN functions which permute F2n , when n is even, is the mystery of
the research on APN functions. Such functions exist for n = 6 as shown by the group of
John Dillon [15]. However no example for even n � 8 is known.

We say that a function is sparse when it is expressed by a polynomial consisting of
few non-zero terms. It is currently believed that APN sparse functions are rare, leading
to more general studies on functions with low differential uniformity (see recent papers
[2–4,7,23,24,26,27]).

In this paper, we construct sparse functions and explore their properties. In particular
we are interested in the algebraic degree, the capacity to resist to differential attacks and
the bijectivity of these functions. More precisely, we consider the functions

Fs,t,γ : x �→ xs + γ Tr
(
xt
)

(1)

on F2n , where γ is a fixed non-zero element of F2n , s, t are fixed positive integers and Tr is
the absolute trace function on F2n . These functions are constructed with two monomials
and therefore they admit an efficient implementation; also, they are more or less easy
to study. The study of functions Fs,t,γ , which are permutations on F2n , was originated
by the first two authors in [11,12]. This paper concentrates on finding special classes of
such families having properties required in applications.

The paper is organized as follows: The next section includes basic properties and
definitions. In Section 3, we describe functions Fs,t,γ which are bijective and which are
2-to-1. We present several properties on these functions. In particular, we give the ex-
pression of the inverse of those permutations and show how to construct permutations
from such 2-to-1 functions. Section 4 is devoted to specific classes. We first characterize
all permutations of the form x �→ xs + γ Tr(x): for such a function, s must be the in-
verse modulo 2n − 1 of a quadratic exponent. Thus, for odd n, such almost bent (AB)
function is 2-to-1. For even n we get permutations with differential uniformity 4. Fur-
thermore these functions have a high algebraic degree. In Section 4.2, we study the case
where x �→ xs in (1) is the multiplicative inverse function. Notably in this case for n

even, we show that the differential uniformity of Fs,t,γ is either 4 or 6 and construct
permutations with differential uniformity 6. We also exhibit some such functions with
differential uniformity 4. In Section 5, we study functions constructed with two quadratic
monomials.
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2. Preliminaries

In this section we recall definitions and properties which will be used later as well as
the so-called switching construction.

2.1. Definitions and notation

Let n � 2 and 0 � s, t � 2n − 1 be integers. To identify s (resp. t) with its 2-adic
expansion is to write

s = (s0, . . . , sn−1) where s =
n−1∑
i=0

si2i, si ∈ {0, 1}.

We call wt(s) =
∑n−1

i=0 si the Hamming weight of s. We say that t covers s if and only if
si � ti for all i. In this case, we use notation

s � t and s ≺ t if s �= t. (2)

Any function F on F2n has a unique univariate polynomial representation as follows:

F (x) =
2n−1∑
k=0

αkx
k, αk ∈ F2n .

Its algebraic degree is deg(F ) = max{wt(k) | αk �= 0}. The derivative of F in the
direction a is the function x �→ F (x) + F (x + a). The resistance of F to differential
cryptanalysis is related to the following quantities:

Definition 1. Let F : F2n → F2n . For any a and b in F2n , we denote

δF (a, b) =
∣∣{x ∈ F2n , F (x) + F (x + a) = b

}∣∣,
where |E| is the cardinality of any set E, and

δ(F ) = max
a�=0,b∈F2n

δF (a, b).

The functions such that δ(F ) = 2, are said to be almost perfect nonlinear (APN ).
A function F is said to be differentially k-uniform if δ(F ) = k.

The following lemma is well-known and easy to prove.

Lemma 1. Let F be a permutation of F2n and denote its compositional inverse by F−1.
Then δF (a, b) = δF−1(b, a) for any a, b. Consequently, δ(F ) = δ(F−1).
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The function F can also be represented by 2n − 1 Boolean functions

fλ: x ∈ F2n �→ Tr
(
λF (x)

)
, λ ∈ F

∗
2n ,

which are called the component functions of F .
We denote by wt(g) the Hamming weight of a Boolean function g, i.e., the number

of x ∈ F2n such that g(x) = 1. The nonlinearity n�(f) of a Boolean function f is its
Hamming distance to the set of all affine functions:

n�(f) = min
β∈F2n ,ε∈F2

wt
(
f + Tr(βx) + ε

)
.

Further, the nonlinearity of F : F2n → F2n is defined as follows

NL(F ) = min
λ∈F

∗
2n

n�(fλ). (3)

The nonlinearity of F measures its vulnerability to linear attacks. The functions that
have maximal nonlinearity are called almost bent (AB). The Walsh transform of F ,
denoted by WF , is defined as

WF (λ, β) =
∑

x∈F2n

(−1)Tr(λF (x)+βx), (4)

for any β ∈ F2n and λ ∈ F
∗
2n . For any fixed λ, the mapping β �→ WF (λ, β) is the Walsh

transform of the component function fλ. If there is an integer �, such that WF (λ, β) ∈
{0,±2�} for all β, then the Boolean function fλ is called plateaued. In particular it is
said to be bent when WF (λ, β) ∈ {±2n/2} for even n. Moreover, F is called plateaued
when all its component functions fλ are plateaued.

Definition 2. A function F : F2n → F2n is said to be almost bent (AB) if and only if its
Walsh transform takes values 0,±2n+1

2 only. Consequently, AB functions exist only for
n odd.

Note that

WF (λ, β) = 2n − 2wt(fλ,β), where fλ,β(x) = Tr
(
λF (x) + βx

)
.

We denote by W(F ) the multiset of the values of the Walsh transform of F . Now, suppose
that F is a permutation of F2n and F−1 its inverse. Then

wt(fλ,β) = wt
(
y �→ λy + βF−1(y)

)
.

This implies that W(F ) = W(F−1); in particular NL(F ) = NL(F−1) and we have
clearly:
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Lemma 2. Let F be an AB permutation of F2n (with n odd). Then F−1 is an AB per-
mutation too.

It is also known that any AB function is an APN function. More details on APN/AB
functions can be found, for instance, in [1,2,14,16] and lists of known such functions
in [6,9].

2.2. Permutations by switching

In [11] and [12], the authors are interesting in functions of the shape G(x)+γ Tr(H(x))
which permute F2n . We first recall a general result based on the existence of a linear
structure for Boolean functions.

Definition 3. Let f be a Boolean function on F2n and c ∈ F2. We say that α ∈ F
∗
2n is a

c-linear structure of f if

f(x) + f(x + α) = c for all x ∈ F2n .

Theorem 1. (See [10, Theorem 2].) Let G be a permutation on F2n , f be any Boolean
function on F2n . Then the function

F (x) = G(x) + γf(x), γ ∈ F
∗
2n , (5)

is a permutation of F2n if and only if γ is a 0-linear structure of f ◦ G−1, where G−1

denotes the compositional inverse function of G.

Remark 1.

(a) Let F be defined by (5). For any y = F (x) then

G−1(G(x)
)

= x = G−1(y + γf(x)
)
.

Since f is a Boolean function, the preimages of y (by F ) contain at most two ele-
ments.

(b) Assume that f(x) = Tr(x) in (5). The function F can be a permutation only if the
Boolean function x �→ Tr(G−1(x)) has a linear structure. We study the case where
G is a monomial in Section 4.1 later.

For all permutations described by Theorem 1, we can compute their inverses using
the knowledge of the inverse of G. We first give a result which is an instance of [19,
Theorem 3]. We include the proof for clarity.
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Lemma 3. Let Q(x) = x + γg(x) be a function on F2n where γ ∈ F
∗
2n is a 0-linear

structure of the Boolean function g. Then Q is involutive, i.e., Q ◦Q equals the identity
function.

Proof. By hypothesis, we have: g(x) + g(x + γ) = 0 for all x. Now

Q
(
Q(x)

)
=

(
x + γg(x)

)
+ γg

(
x + γg(x)

)
,

where clearly Q(Q(x)) = x when g(x) = 0. When g(x) = 1

Q
(
Q(x)

)
= x + γ + γg(x + γ) = x + γ + γg(x) = x. �

Theorem 2. Let F be defined by (5) with the same hypothesis on G and f . Assume that
F is a permutation. Then

F−1 = G−1 ◦Q where Q(x) = x + γf
(
G−1(x)

)
.

Proof. Set g = f ◦G−1. From Theorem 1, γ is a 0-linear structure of g. So, we can apply
Lemma 3: Q is involutive. And we have for any x

F
(
G−1 ◦Q

)
(x) = G

(
G−1 ◦Q

)
(x) + γf

(
G−1 ◦Q

)
(x)

= Q(x) + γf
(
G−1(Q(x)

))
= (Q ◦Q)(x) = x. �

In [8] it was observed that any function F (x) = G(x) + Tr(H(x)) satisfies δ(F ) � 4
as soon as G is APN. A more general version of this fact was given in [12].

Proposition 1. (See [12, Proposition 3].) Let G and H be functions on F2n and δ(G) = ρ.
Then the function F (x) = G(x) + γ Tr(H(x)) satisfies δ(F ) � 2ρ for any γ ∈ F

∗
2n .

3. A class of sparse functions: a presentation

A class of sparse functions which, under certain hypothesis, are either bijective or
2-to-1, have a large algebraic degree and a low differential uniformity, was introduced
in a recent paper [12]. In this section we recall and extend the results presented in [12,
Section 4]. In particular, we are more explicit about the properties of this class, giving
notably the inverse of such permutations. We also derive new permutations from such
2-to-1 functions.

Definition 4. Let us define the class of polynomials

Fs,t,γ(x) = xs + γ Tr
(
xt
)
, 1 � s, t � 2n − 2, γ ∈ F

∗
2n . (6)

The corresponding function on F2n will be denoted by x �→ Fs,t,γ(x).
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Notation 1. Instead of Fs,t,γ , we will use simpler notation such as Fi,γ , Fi, F , as far as
possible.

3.1. The subclass of permutations

First we characterize s, t, γ such that the corresponding Fs,t,γ is a permutation of F2n .
In this context, note that s must satisfy gcd(s, 2n − 1) = 1:

Lemma 4. If gcd(s, 2n−1) > 1 then Fs,t,γ is neither a permutation nor a 2-to-1 function
on F2n .

Proof. Let � = gcd(s, 2n − 1) with � � 3. Then there are exactly � different elements
x1, . . . , x� ∈ F2n , such that xs

i = ω for some ω ∈ F2n , for 1 � i � �. We have

Fs,t,γ(xi) ∈ {ω, ω + γ}, for all i ∈ [1, �].

Thus, Fs,t,γ is not a permutation. Moreover, if � � 5 then Fs,t,γ clearly cannot be 2-to-1
too. Assume that � = 3 and Fs,t,γ is 2-to-1. Then there is z ∈ F2n , z �= xi for all i, such
that Fs,t,γ(z) ∈ {ω, ω + γ}. This implies zs = ω + γ. But then there are further two
elements z1, z2 such that zsi = zs implying Fs,t,γ(zi) ∈ {ω, ω + γ}, a contradiction. �

The proof of the next theorem is given briefly in [12, Theorem 7], as an application.
For clarity, we detail the proof below.

Theorem 3. Let Fs,t,γ(x) = xs + γ Tr(xt) with γ ∈ F
∗
2n . Then Fs,t,γ is a permutation on

F2n if and only if gcd(s, 2n − 1) = 1,

t ≡ 2j
(
2i + 1

)
s (mod 2n − 1) for some 0 � i, j � n− 1, i �= n/2,

and either (a) or (b) holds:

(a) i = 0 and Tr(γ) = 0.
(b) i > 0 and γ ∈ F2k with Tr(γ2i+1) = 0, where k = gcd(2i, n).

Moreover, if Tr(γ) = 1, in case (a), or Tr(γ2i+1) = 1 in case (b), then Fs,t,γ is a 2-to-1
function.

Proof. From Lemma 4, we must have gcd(s, 2n − 1) = 1. Let s−1 be the inverse of s

modulo 2n − 1.
In accordance with Theorem 1, the function Fs,t,γ is a permutation if and only if γ is

a 0-linear structure of Tr(xts−1). This is possible if and only if

ts−1 ≡ 2j
(
2i + 1

)
(mod 2n − 1), for some i, j,
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from [12, Theorem 5]. Case (a) corresponds to case (i) in theorem [12, Theorem 5].
Further, (b) follows from case (ii)(a) of this theorem. In this case Tr(xts−1) = Tr(x2i+1)
and γ is a Tr(γ2i+1)-linear structure of Tr(x2i+1) if and only if γ ∈ F2k .

Now, if γ is a 1-linear structure of u �→ Tr(uts−1) then

Tr
(
uts−1)

+ Tr
(
(u + γ)ts

−1)
= 1 for all u.

Thus Fs,t,γ is 2-to-1. Indeed, according to Remark 1, y0 = Fs,t,γ(x) for at most two x,
say x1 and x2 with x1 = (y0 + γ)1/s and x2 = y

1/s
0 . We have only to prove that they are

exactly two for any y0. We have

Fs,t,γ(x1) = y0 + γ + γ Tr
(
(y0 + γ)ts

−1)
= y0 + γ + γ

(
1 + Tr

(
yts

−1

0
))

= y0 + γ Tr
(
xt

2
)

= Fs,t,γ(x2).

This proves that Fs,t,γ(x1) = y0 implies Tr(xt
2) = 0 which implies Fs,t,γ(x2) = y0, and

vice-versa.1 �
The case (a) of Theorem 3 is the trivial case where Fs,t,γ(x) = xs + γ Tr(xs) with

gcd(s, 2n − 1) = 1, i.e., it is the composition of the monomial permutation xs with the
function x �→ x+ γ Tr(x), the latter is a linear permutation if and only if Tr(γ) = 0. In
this case, Fs,t,γ is said to be extended affine equivalent (EA-equivalent) to x �→ xs and
then has the same differential properties as xs.

Corollary 1. Let F (x) = xs + γ Tr(xs) with gcd(s, 2n − 1) = 1 and Tr(γ) = 0. Set
δ(x �→ xs) = ρ. Then F is a permutation such that δ(F ) = ρ.

Combining Theorem 3 and Proposition 1, we obtain an infinite class of sparse poly-
nomials which are bijective and have an upper bounded differential uniformity.

Corollary 2. Assume that s satisfies gcd(s, 2n − 1) = 1 and δ(x �→ xs) = ρ. Further, let
1 � i < n/2, k = gcd(2i, n) and define the function Fs,i,γ on F2n by

Fs,i,γ : x �→ xs + γ Tr
(
xs(2i+1)). (7)

Then Fs,i,γ is a permutation when Tr(γ2i+1) = 0 (and a 2-to-1 function otherwise) with
a provable bound on the differential uniformity:

δ(Fs,i,γ) � 2ρ.

1 Note that this property was proved in a more general context (for any characteristic) by [11, Theorem 3].



222 P. Charpin et al. / Finite Fields and Their Applications 28 (2014) 214–243
Remark 2. We use the notation of Theorem 3.

(a) If n is odd then k = gcd(i, n) with k odd. Then γ2i = γ so that Tr(γ2i+1) = Tr(γ).
For n = 2m we have k = 2 gcd(i,m).

(b) One can choose s and 2i+1 as the smallest elements of their cyclotomic coset. Indeed
Fs,2s(2i+1),γ = Fs,s(2i+1),γ and

(
Fs,s(2i+1),γ(x)

)2 = x2s + γ2 Tr
(
xs(2i+1)).

(c) If x �→ xs is APN then δ(Fs,s(2i+1),γ) ∈ {2, 4}.

We conclude this section with some remarks on the permutations Fs,t,γ with low
differential uniformity.

Proposition 2. Consider the function Fs,t,γ(x) = xs+γ Tr(xt), γ ∈ F
∗
2n , 1 � s, t � 2n−2,

on F2n . Then we have:

(i) If n is even and x �→ xs is APN then F is not a permutation.
(ii) Let n be odd and t = s(2i + 1) where gcd(i, n) = 1. Then F is not a permutation. It

is a 2-to-1 function when gcd(s, 2n − 1) = 1 and γ = 1.

Proof. (i) It is well known that if x �→ xs is APN then gcd(s, 2n − 1) = 1 when n is odd
and gcd(s, 2n − 1) = 3 when n is even (see a proof in [1, Proposition 3]). Thus, x �→ xs

is not bijective for n even. From Theorem 3, F cannot be a permutation.
(ii) We again apply Theorem 3 for odd n. When gcd(i, n) = 1 we must have γ ∈ F2

to build a permutation F . Since n is odd, Tr(1) = 1 so that F is 2-to-1. �
The functions Fs,t,γ which are known to be at most differentially 4-uniform must be

checked whether they are APN. Presently, such functions which are known to be APN
have algebraic degree 2. Notably, the functions x �→ x3 + Tr(x9), introduced in [8], are
APN for any n. We consider these functions in Section 5. The next proposition shows
that such a function cannot be a permutation.

Proposition 3. There is no permutation on F2n of the shape

F (x) = x2j+1 + γ Tr
(
x(2i+1)(2j+1)) with gcd(j, n) = 1 and gcd(i, n) = 1.

This holds in particular for x �→ x3 + γ Tr(x9), for any γ ∈ F
∗
2n and any n.

Proof. Since x �→ x2j+1 is APN, then F is not a permutation for n even, according to
Proposition 2(i). For n odd, we apply Proposition 2(ii). �
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Example 1. Let s = 22i−2i +1 with gcd(i, n) = 1 be the so-called Kasami exponent, and

F (x) = xs + γ Tr
(
x23i+1).

Note that x �→ xs is APN and that 23i+1 = (2i+1)s. So δ(F ) � 4. For even n, F cannot
be a permutation. If n is odd then F is a 2-to-1 function for γ = 1. For i = 1 we get
F3,9,1 which is APN for any n.

3.2. The inverse of permutations of type (6)

Here, we give the inverse of permutations, say F , defined by Theorem 3. Note that
the inverse F−1 can have a large number of terms and a high algebraic degree while it
has the same nonlinearity and the same differential uniformity as F .

Theorem 4. Let Fs,t,γ be a permutation on F2n , defined as in Theorem 3 with t = s(2i+1)
for some i. Let σ = s−1 (mod 2n − 1). Then,

F−1
s,t,γ(x) =

(
x + γ Tr

(
x2i+1))σ

= xσ +
(∑

j≺σ

xjγσ−j

)
Tr

(
x2i+1).

Proof. We apply Theorem 2, with G(x) = xs (and thus G−1(x) = xσ) and

Q(x) = x + γ Tr
((
G−1(x)

)t) = x + γ Tr
(
xtσ

)
= x + γ Tr

(
x2i+1).

Hence F−1
s,t,γ = G−1 ◦Q. More precisely

F−1
s,t,γ(x) =

(
x + γ Tr

(
x2i+1))σ =

∑
j�σ

xj
(
γ Tr

(
x2i+1))σ−j

.

It remains to observe that (Tr(x2i+1))σ−j = Tr(x2i+1) for all j �= σ. �
According to Theorem 3, if Fs,t,γ is a permutation then γ ∈ F2k where k = gcd(2i, n).

Consequently, the function Fs,t,γ as well as its inverse function have coefficients in the
subfield F2k .

Assume that n = 2m and thus k = 2 gcd(i,m). If gcd(i,m) = 1 or γ ∈ F2m then Fs,t,γ

cannot be APN. This is because there is no APN permutation which corresponds to a
polynomial in F4[x] or in F2m [x] (see [18] and [1, Theorem 3]).

In the following example and later in this paper we consider functions Fs,t,γ with
s = 2n − 2. Since x2n−2 is the multiplicative inverse of every non-zero element x ∈ F2n ,
it is custom to write x−1 instead of x2n−2, where 0−1 is taken to be 0.
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Example 2. Notation is as in the previous theorem. Let n = 3d, s = 2n − 2, i = 3,
k = gcd(6, n) and consider the permutation

F (x) = x−1 + γ Tr
(
x−(23+1)), γ ∈ F2k with Tr

(
γ9) = 0.

Then, since x−1 = x2n−2 = x2(2n−1−1),

F−1(x) = x−1 +
( 2n−1−2∑

j=0
xjγ2n−1−j−1

)2

Tr
(
x9).

Recall that δ(F ) = δ(F−1). If n is odd, then k = 3 and δ(F ) � 4. Hence γ ∈ F23 implying
γ9 = γ2 and thus

Tr
(
γ9) = Tr(γ) = T 3

1 (γ) = γ + γ2 + γ4.

So, a half of γ ∈ F23 satisfy Tr(γ) = 0. When n = 2m then k = 6 and γ ∈ F26 . We will
prove later, by Lemma 5, that in this case 4 � δ(F ) � 6.

Proposition 4. Let Fs,t,γ be a permutation on F2n with n = 2m and γ ∈ F2k where
k = 2 gcd(i,m) and e = gcd(i,m).

If γ ∈ F4 or γ ∈ F2e then Fs,t,γ, as well as its inverse, cannot be APN.

Remark 3. According to the previous proposition, F is possibly APN when γ ∈ F2k \
(F4 ∪ F2e), but there is no example of such APN function.

Remark 4. The algebraic degree of the inverse of the function Fs,t,γ is clearly less than
or equal to wt(s−1) + 1. It seems difficult to have more explicit results for general cases.
But we can have improvements for special classes (see, for example, Theorem 6). The
value of wt(s−1) is studied in [21].

We conclude this section with a brief discussion on the nonlinearity of functions Fs,t,γ .
Recall that we denote by NL(F ) the nonlinearity of a function F on F2n and by n�(f)
the nonlinearity of a Boolean function f (see Section 2.1).

Consider any function Fs,t,γ = xs + γ Tr(xt) of type Definition 4 and denote by fλ,
λ ∈ F

∗
2n , its component functions. According to (3), we have here

NL(Fs,t,γ) = min
λ∈F

∗
2n

{
n�(fλ), fλ(x) =

{
Tr(λxs) if Tr(λγ) = 0
Tr(λxs + xt) if Tr(λγ) = 1

}
. (8)

To compute the multiset W(Fs,t,γ) collecting the values of the Walsh transform of Fs,t,γ

as defined by (4), seems a difficult problem. It is clear that it is related with the val-
ues of W(G) with G(x) = xs. Also, when G is a permutation and t = (2i + 1)s, the
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nonlinearity of the Boolean function x �→ Tr(x2i+1) is involved since the weight of fλ,
when Tr(λ) = 1, equals the weight of

gλ(y) = Tr
(
λy + y2i+1), taking y = xs.

If Fs,t,γ is bijective the components of its inverse function have a more complicated
expression, according to Theorem 4.

Problem 1. Not much is known about the Walsh spectrum of functions which are built
with two monomials. The main results are obtained for quadratic such functions (see a
survey in [5] and the recent paper [7]). It is an open problem to find any general property
in this context.

3.3. The case of 2-to-1 functions

Consider the function on F2n given by

Fs,i,γ(x) = xs + γ Tr
(
xs(2i+1)), with i > 0 and gcd

(
s, 2n − 1

)
= 1. (9)

Assume that γ ∈ F2k with k = gcd(2i, n). Then, according to Theorem 3, Fs,i,γ is a
2-to-1 function on F2n if and only if Tr(γ2i+1) = 1. The next theorem shows that also
in this case we can construct a new permutation.

Theorem 5. Consider a function Fs,i,γ , defined by (9) such that γ ∈ F2k with
k = gcd(2i, n). Denote by ρ the differential uniformity of x �→ xs and let σ =
s−1 (mod 2n − 1). Then the function

Gs,i,γ(x) = xs + γ Tr
(
xs(2i+1) + γ2i

xs
)

is a permutation on F2n and its inverse is as follows:

G−1
s,i,γ(x) = xσ +

(∑
j≺σ

xjγσ−j

)
Tr

(
x2i+1 + γ2i

x
)
.

Furthermore, δ(Gs,i,γ) � 2ρ. In particular, for any odd n, if x �→ xs is APN, then the
differential uniformity of permutations Gs,i,γ is at most 4.

Proof. We apply Theorem 1. The function

R(y) = y + γ Tr
(
y2i+1 + γ2i

y
)

= y + γf(y)

is a permutation on F2n , since γ is a 0-linear structure of f . Indeed, since γ ∈ F2k where
k divides 2i, we have

Tr
(
y2i+1 + (y + γ)2

i+1 + γ2i+1) = Tr
(
y2i(

γ22i
+ γ

)
+ 2γ2i+1) = 0,
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for all y ∈ F2n . Since y �→ ys is a permutation, the composition y �→ R(ys) is
a permutation too. Note that Gs,i,γ(y) = R(ys). Hence the inverse of Gs,i,γ(y) is
(R−1(y))σ = (R(y))σ, where the latter equality holds by Lemma 3. Steps of the proof of
Theorem 4 yield the expression for G−1

s,i,γ . Proposition 1 completes the proof. �
Remark 5. In the previous method we can use γ = 1 when n is odd. Indeed, for any n

(odd and even) the functions

G(x) = xs + Tr
(
xs(2i+1) + xs

)
(10)

are permutations on F2n . Such an example is treated in Proposition 8 later.

4. On specific classes

In this section, we study some specific classes of functions Fs,t,γ . Our main purpose is
to exhibit such functions with low differential uniformity, which are preferably bijective.
As we showed in the previous sections, it is easy to construct functions Fs,t,γ with
differential uniformity at most 4. For odd prime n, they are not bijective, but they are
2-to-1 functions, which is also of interest. When n is even, we get easily permutations
with differential uniformity at most 8. It is known that, in this case, bijective functions
with differential uniformity 4 are rare. We describe in this section two classes of functions
Fs,t,γ for which the differential uniformity is better than the bound of Proposition 1.

4.1. The functions Fs,1,γ

We determine here all permutations of the type xs+γ Tr(x) and give their parameters.
This problem is an instance of the study of bijectivity of functions xs +L(x), where L is
a linear function over F2, see [23,24]. A generalization to odd characteristic for s = −1
appeared recently in [17]. Here we consider the functions

Fs,γ(x) = xs + γ Tr(x), gcd
(
s, 2n − 1

)
= 1, γ ∈ F

∗
2n , (11)

where s is not a power of 2. Recall that, according to Theorem 3, the condition gcd(s, 2n−
1) = 1 is necessary in order to have Fs,γ bijective.

Theorem 6. A function Fs,γ , defined by (11), is bijective if and only if

s = 2j

2i + 1 (mod 2n − 1) for some i, j with i > 0,

and both of the following conditions hold:

• n/� odd, with � = gcd(i, n);
• γ ∈ F2k , k = gcd(2i, n), such that Tr(γ2i+1) = 0.
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In this case,

δ(Fs,γ) = 2� and deg(Fs,γ) = n− � + 2
2 .

The nonlinearity of Fs,γ equals the nonlinearity of x �→ x2i+1. Moreover

F−1
s,γ = x2i+1 +

(
γ2i+1 + γ2i

x + γx2i)
Tr

(
x2i+1)

with deg(F−1
s,γ ) = 3 and NL(F−1

s,γ ) = NL(Fs,γ) = 2n−1 − 2(n+k−2)/2. All component
functions of Fs,γ and of its inverse are plateaued.

Proof. Let gs(x) = xs and � = gcd(i, n). We first apply Theorem 1 to Fs,γ(x) = gs(x) +
γ Tr(x). The function Fs,γ is bijective if and only if γ is a 0-linear structure of Tr(x1/s).
We know from [12, Theorem 5] that such a monomial Boolean function has a linear
structure if and only if it is quadratic. That is the case here since 2j(1/s) = 2i + 1 for
some i, j. Moreover for i > 0, the conditions on γ are obtained by Theorem 3. Note that
gcd(s, 2n−1) = 1 if and only if n/� is odd, since s is the inverse of a quadratic exponent.

Thus the permutations of type (11) are of the form

Fs,γ = x
2j

2i+1 + γ Tr(x), n/� odd, γ ∈ F2k and Tr
(
γ2i+1) = 0. (12)

The values δ(a, b) for Fs,γ are the same as those of x �→ x2i+1; they are in the set
{0, 2�} where � = gcd(i, n).2 The algebraic degree of Fs,γ is obtained by computing the
Hamming weight of (2i + 1)−1: It is (see [20, Theorem 2] and [21]):

1
2i + 1 = 1 +

n/�∑
u=1

2ui−1(−1)u, wt

(
1

2i + 1

)
= n− � + 2

2 . (13)

The function F−1
s,γ is computed by using Theorem 4 and its algebraic degree is clearly 3.

For the nonlinearity, we simply look at the spectrum of component functions fλ of Fs,γ .
We have for any λ ∈ F

∗
2n and a ∈ F2n

fλ(x) + Tr(ax) = Tr
(
λ
(
xs + γ Tr(x)

)
+ ax

)
= Tr

(
λxs + xTr(λγ) + ax

)
= Tr

(
y2i+1(Tr(λγ) + a

)
+ λy

)
, a ∈ F

∗
2n ,

where y2i+1 = x. We get values of the spectrum of x �→ x2i+1 which is {0,±2(n+k)/2}
and it is the same for the spectrum of F−1

s,γ (see Sections 2.1 and 3.2). �
2 These quadratic functions are two-valued as was explained in [2, Section 5]; the same holds for some

Kasami exponents.
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We now consider the functions Fs,γ which have the lowest differential uniformity, that
is δ(Fs,γ) = 4 for even n and δ(Fs,γ) = 2 for odd n.

Corollary 3. Let n = 2m with m odd. Let an integer i be such that 2 � i � m and
gcd(i, n) = 2. Let γ ∈ F

∗
2n . Then the function

Fi,γ(x) = x
1

2i+1 + γ Tr(x)

is a permutation on F2n if and only if γ = 1. It is a 2-to-1 function when γ ∈ F4 \ F2.
Moreover this function is plateaued and satisfies

δ(Fi,γ) = 4, deg(Fi,γ) = m and NL(Fi,γ) = 2n−1 − 2n
2 .

When Fi,γ is a permutation, its inverse is

F−1
i,γ (x) = x2i+1 +

(
1 + x + x2i)

Tr
(
x2i+1),

which has same differential uniformity and same nonlinearity as Fi,γ .

Proof. We apply Theorem 6. Note that x �→ x2i+1 is a permutation on F2n , since
n/ gcd(i, n) = m where m is odd. Also k = gcd(2i, n) = 2. Then Fi,γ is a permuta-
tion if and only if γ ∈ F

∗
4 and Tr(γ2i+1) = 0. In this case, since i is even,

Tr
(
γ2i+1) = Tr(γ) = m ·

(
γ + γ2) =

{
0 if γ ∈ {0, 1},
1 otherwise.

So, only γ = 1 is possible. The proof is completed by applying directly Theorem 6. �
Remark 6. In the permutations Fi,γ defined by Corollary 3, the expression of s = (1 +
2i)−1 is

s = 1 +
m∑
�=1

(−1)�2i�−1 (mod 2n − 1), wt(s) = n

2 = m

(according to (13)). In a recent paper [7], the authors point out that few permutations
on F2n , with n even, are known, which are differentially 4-uniform and have a high non-
linearity. By Corollary 3, we extend [7, Table 1]. Although Fi,γ is derived from quadratic
monomials, it is of high algebraic degree.

Corollary 4. Let n be odd.

(a) If 2 � i � n with gcd(i, n) = 1, then the function

Fi(x) = x
1

2i+1 + Tr(x)

is 2-to-1 function which is AB of algebraic degree (n + 1)/2.
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(b) If 2 � i � n with gcd(i, n) = 3 and γ ∈ F8 with Tr(γ) = 0, then the function

Fi,γ(x) = x
1

2i+1 + γ Tr(x)

is a permutation on F2n . Moreover, δ(Fi,γ) = 8 and deg(Fi,γ) = (n− 1)/2.

Proof. When gcd(i, n) = 1, the function x �→ x2i+1 is an AB function as well as the
function x �→ x

1
2i+1 and, further, the function Fi is also AB. The function Fi is 2-to-1

because Tr(1) = 1 and it is here the only possibility for γ (γ = 1 in Theorem 3). When
gcd(i, n) > 1 one can construct bijective functions of type Fi,γ . Their properties are
directly obtained from Theorem 6. �
Remark 7. Note that the following functions Gi, derived from Fi above,

Gi(x) = x
1

2i+1 + Tr
(
x + x

1
2i+1

)
, 2 � i � n with gcd(i, n) = 1,

are bijective and such that δ(Gi) � 4, by Theorem 5. Actually δ(Gi) = 4, since this
function has a linear component function:

x �→ Tr
(
Gi(x)

)
= Tr(x).

Indeed, we know by [1, Theorem 2] that Gi is APN if and only if

∑
λ∈F2n

( ∑
x∈F2n

(−1)gλ(x)+gλ(x+a)
)2

= 22n+1, for all a, (14)

where gλ are the component functions of Gi. If one component, say g1, is linear then all
its derivatives are constant and condition (14) cannot hold unless all gλ, λ �= 1, are bent,
which is impossible (n is odd here).

Example 3. Let n be odd. Note that

1
2(n+1)/2 + 1

= 2(n+1)/2 − 1 (mod 2n − 1).

Thus, the functions

F (x) = x2(n+1)/2−1 + Tr(x) and G(x) = x2(n+1)/2−1 + Tr
(
x + x2(n+1)/2−1)

are respectively 2-to-1 and bijective. The function F is AB while δ(G) = 4.
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4.2. The multiplicative inverse function

In this section, we study a subclass of functions on F2n :

F (x) = x−1 + γ Tr
(
H(x)

)
, γ ∈ F

∗
2n ,

where H(x) is any function. Actually, we will focus on the case where H(x) = xt for
some t, after the general result given by Lemma 5 later. We first introduce notation and
formula which will be used in all the section and do not depend on the choice of H. The
(multiplicative) inverse function over a finite field is defined as x �→ x−1 = 1/x assuming
that 0−1 = 0. A derivative of Ft,γ in point a ∈ F

∗
2n can be written as follows

DaF (x) = fa(x) + γ Tr
(
ha(x)

)
, where fa(x) = 1

x
+ 1

x + a
, (15)

and ha(x) = H(x)+H(x+a). To compute δ(F ) we must compute the number of solutions
x of the equations

E(a, b): DaF (x) = b, a ∈ F
∗
2n , b ∈ F2n . (16)

Note that DaF (x) = b implies fa(x) ∈ {b, b + γ}. Also, we have:

(p1) An equation E(a, b) is satisfied for x ∈ {0, a} if and only if

either b = 1
a

(
with Tr

(
ha(0)

)
= 0

)
or b = 1

a
+ γ

(
with Tr

(
ha(0)

)
= 1

)
.

(p2) If x /∈ {0, a} then fa(x) = a(x2 + ax)−1.
(p3) Consider any equation E(a, b). Then E(a, b) is satisfied for x and x + a, with

x /∈ {0, a}, if and only if x satisfies at least one of these instances

x2 + ax + a

b
= 0 with Tr

(
ha(x)

)
= 0, (17)

x2 + ax + a

b + γ
= 0 with Tr

(
ha(x)

)
= 1. (18)

This is clear by writing a(x2 + ax)−1 = β, β ∈ {b, b + γ}. Note that for each such
β the equation x2 + ax + a/β = 0 has two solutions if and only if Tr(1/(aβ)) = 0.

(p4) We can choose a such that

Tr

(
1
)

= 0 for β = 1 + γ and for any γ,

aβ a
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since the function a �→ 1/(1 + γa) is bijective on F
∗
2n . Moreover if β = 1/a then

Tr(1/(aβ)) = Tr(1).
Thus, when n is even, there exists a ∈ F

∗
2n such that Tr(1/(aβ)) = 0 for both

β = 1/a and β = 1/a + γ.

Note that we implicitly proved the well-known property that the inverse function, say
G(x) = x−1, satisfies δ(G) = 2 for odd n and δ(G) = 4 for even n [25].

Lemma 5. Let F (x) = x−1 + γ Tr(H(x)) where H is any function on F2n . Then

δ(F ) ∈
{ {2, 4} when n is odd,
{4, 6} when n is even.

Proof. When n is odd, it comes directly from Proposition 1; note that δ(F ) = 2 when
H is linear.

Assume that n is even and choose a such that Tr(1/(1+γa)) = 0 (see (p4)). According
to (p1)–(p3), if b /∈ {1/a, 1/a+ γ} then E(a, b) has at most four solutions. We are going
to prove that E(a, 1/a) or, respectively E(a, 1/a + γ), has at least four solutions.

We first suppose that the equation E(a, 1/a) is satisfied for x ∈ {0, a}, i.e., that
Tr(ha(0)) = 0. Further, E(a, 1/a) has at least two other solutions if and only if (17)
or (18) holds for x /∈ {0, a}. Since the choice of a, we have

fa(x) = 1
a

has 2 solutions y, y + a;

and

fa(x) = 1
a

+ γ has 2 solutions z, z + a.

If Tr(ha(y)) = 0 then y is a solution of E(a, 1/a) else y is a solution of E(a, 1/a + γ).
Similarly, if Tr(ha(z)) = 1 then z is a solution of E(a, 1/a) else z is a solution of
E(a, 1/a + γ). This is exactly to say: if E(a, 1/a) has no solution x, x /∈ {0, a}, then
E(a, γ + 1/a) has four solutions y, z, y + a and z + a.

If Tr(ha(0)) = 1 then E(a, γ+1/a) is satisfied for x ∈ {0, a}. Similarly, we prove that
if E(a, γ + 1/a) has no solution x, x /∈ {0, a}, then E(a, 1/a) has four solutions. We can
conclude that δ(F ) � 4.

Moreover, it is clear that we cannot have δ(F ) = 8 (when n is even). It is because an
equation E(a, b) can have more than four solutions only when 0 and a are solutions. In
this case, b ∈ {1/a, 1/a + γ} and for each such b the number of solutions is 4 or 6. �
Problem 2. It is of interest to study x−1 + γ Tr(H(x)) for specific classes of H. For
instance, by taking H(x) = x2/(x+1), the authors of [26] obtain permutations F on F2n

with n even and such that δ(F ) = 4. Does this property hold when H is a monomial? We
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think that the answer is generally no. However it is easy to construct such permutations
F with low differential uniformity as discussions of this section show.

From now on, we consider the following functions:

Ft,γ(x) = x−1 + γ Tr
(
xt
)
, γ ∈ F

∗
2n . (19)

Proposition 5. Let γ ∈ F
∗
2n , 1 � i < n, i �= n/2, and

Fi,γ(x) = x−1 + γ Tr
(
x2n−1−2i−1−1). (20)

Then Fi,γ(x) is a permutation polynomial when

γ ∈ F2k such that Tr
(
γ2i+1) = 0 where k = gcd(2i, n).

If Tr(γ2i+1) = 1 then Fi,γ is 2-to-1. In both cases, δ(Fi,γ) � 4 for odd n and 4 �
δ(Fi,γ) � 6 for even n.

Proof. The bounds on δ(Fi,γ) come from Lemma 5. Note that −1 ≡ 2n−2 (mod 2n−1)
and

(
2n − 2

)(
2i + 1

)
= 2i + 2n − 2i+1 − 2 = 2n − 2i − 2

= 2
(
2n−1 − 2i−1 − 1

)
(mod 2n − 1).

To complete the proof, we apply Corollary 2. �
Now, we are going to study two subclasses of functions of type (19). The first subclass

is given by (20) where we put i = 1. Note that, in this case,

Tr
(
x2n−1−2i−1−1) = Tr

(
x2n−2−1) = Tr

(
x−3).

Lemma 6. Consider the function F (x) = x−1 + Tr(x−3) on F2n . Then we have:

• If n is even then F is a permutation. It satisfies δ(F ) = 6 if and only if there is
a ∈ F

∗
2n such that

Tr
(
a−3) = 0, T r

(
(a + 1)−1) = 0 and Tr

(
a−1) = 1.

• If n is odd then F is 2-to-1. It satisfies δ(F ) = 4 when there is a ∈ F
∗
2n such that

Tr
(
a−3) = 0, T r

(
(a + 1)−1) = 0 and Tr

(
a−1) = 1.
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Proof. We apply Proposition 5. The function F is a permutation when n is even and
a 2-to-1 function for odd n; we get also the upper bounds on δ(F ). We use notation
and formula from (19), (15) and (p1)–(p4). For any a ∈ F

∗
2n , if x /∈ {0, a} we can write

fa(x) = a(x2 + ax)−1 and

ha(x) = 1
x3 + 1

(x + a)3 = x3 + (x + a)3

(x2 + ax)3 = x2a + xa2 + a3

(x2 + ax)3

= a

(x2 + ax)2 +
(
fa(x)

)3 = (fa(x))2

a
+

(
fa(x)

)3
. (21)

Note that

fa(x) = 1
a
, x /∈ {0, a} ⇒ Tr

(
ha(x)

)
= Tr

(
2/a3) = 0. (22)

Thus, E(a, 1/a + 1) has at most 4 solutions, since fa(x) + Tr(ha(x)) = 1/a + 1 with
Tr(ha(x)) = 1 is impossible. For u ∈ F

3
2, define the property (Eu) on a ∈ F

∗
2n as follows:

(Eu): Tr
(
a−3) = u1, T r

(
(a + 1)−1) = u2 and Tr

(
a−1) = u3.

1. Assume that n is even. We take u = (0, 0, 1). Our goal is to prove that δ(F ) = 6
if and only if there is a such that (Eu) holds. According to (22), the equation E(a, 1/a)
has 6 solutions x if and only if the following equations (∗) and (∗∗) have respectively 4
and 2 solutions

(∗) fa(x) = 1
a

with Tr
(
ha(x)

)
= 0; (∗∗) fa(x) = 1 + a

a
with Tr

(
ha(x)

)
= 1.

The solutions of (∗) are {0, a} and the two solutions of x2 + ax + a2 = 0. But x = 0 is
a solution if and only if Tr(ha(0)) = Tr(a−3) = 0 and we get the first condition of (Eu). If
(∗∗) is satisfied too then fa(x) = (1 + a)/a where a �= 1 because fa(x) = 0 is impossible,
since x �→ x−1 is a permutation. (∗∗) is satisfied if and only if Tr(1/(a + 1)) = 0 and
Tr(ha(x)) = 1, which is

Tr
(
ha(x)

)
= Tr

(
(a + 1)3

a3 + (a + 1)2

a3

)
= Tr

(
a3 + a

a3

)

= Tr
(
1 + a−2) = Tr

(
a−1) = 1.

So we get respectively the second and the third condition of (Eu).
2. Assume that n is odd. The equation Ea,1/a has 4 solutions when (∗) and (∗∗) have

both 2 solutions. We are going to prove that it is the case when there is a such that (Eu)
holds for u = (0, 0, 0). We give a brief proof since the method is similar to even n.

The solutions of (∗) are {0, a} with Tr(a−3) = 0. Further, the equation fa(x) =
(a + 1)/a must have two solutions (x, x + a) with Tr(ha(x)) = 1. The conditions are

Tr
(
1/(a + 1)

)
= 0 and Tr

(
1 + a−2) = Tr

(
a−1) + 1 = 1, i.e. Tr

(
a−1) = 0. �
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For any triple (u1, u2, u3) ∈ F
3
2 and sufficiently large n, the existence of a satisfying

(Eu) follows from [13, Theorem 1.1], which we adapted for our case in the next theorem.
We first need the following definition:

Definition 5. Let f1(x), f2(x), f3(x) ∈ F2n [x]. We say that the fi(x) form a strongly
linearly independent set over F2 if there is no (v1, v2, v3) ∈ F

3
2 such that

v1f1(x) + v2f2(x) + v3f3(x) = h2(x) + h(x) + β (23)

for some β ∈ F2n and h(x) ∈ F2n [x].

Theorem 7. (See [13].) Let f1(x), f2(x), f3(x) ∈ F2n [x] form a strongly linearly indepen-
dent set over F2. Further, for 1 � i � 3 let

fi(x) = ci(x)
di(x) , where ci(x), di(x) ∈ F2n [x] are coprime polynomials.

Set m = max{deg ci(x), deg di(x), 1 � i � 3}. Then there is a primitive element α ∈ F2n

with

Tr
(
f1(α)

)
= u1, T r

(
f2(α)

)
= u2, T r

(
f3(α)

)
= u3

for any fixed (u1, u2, u3) ∈ F
3
2, whenever

n > 4
(
3 + log2(�m)

)
, � = 9 · 8 · 3. (24)

Proposition 6. Let f1(x) = x−3, f2(x) = (x + 1)−1, f3(x) = x−1. Then, the fi(x) form
a strongly linearly independent set over F2.

Consequently, the property (Eu), u ∈ F
3
2, holds whenever n � 38. In particular, in

Lemma 6, F satisfies δ(F ) = 4 for such odd n and δ(F ) = 6 for such even n.

Proof. We suppose that (23) holds for some (v1, v2, v3) and we write h(x) = h1(x)/h2(x)
where h1(x), h2(x) ∈ F2n [x] are coprime polynomials. Then we get:

v1(x + 1) + v2x
3 + v3x

2(x + 1) + βx3(x + 1)
x3(x + 1) = h2

1(x) + h1(x)h2(x)
h2

2(x) ,

where h2
2(x) and h2

1(x)+h1(x)h2(x) are coprime. Therefore, we must have h2(x) ∈ {1, x},
since h2

2(x) must divide x3(x + 1). Hence, x(x + 1) divides

B(x) = v1(x + 1) + v2x
3 + v3x

2(x + 1) + βx3(x + 1)

implying B(0) = 0 and B(1) = 0. This yields v1 = 0 and v2 = 0. Note that (23) implies
now Tr(v3f3(x)) = Tr(β) for all x, which is impossible if v3 �= 0.
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The inequality n � 38 is obtained by computing (24) with m = 3. We complete the
proof by using Theorem 7. �
Remark 8. To extend Lemma 6, note that by Theorem 5, for odd n the function G(x) =
x−1 + Tr(x−3 + x−1), on F2n is a permutation such that δ(G) � 4.

We noticed that sparse permutations with differential uniformity 4 are rare for even n.
However there are functions x �→ x−1 + γ Tr(xt), on F2n with n even and for some t

which are not bijective but have the same differential uniformity as x �→ x−1.

Theorem 8. Let n be even, t ∈ {3, 5} and γ ∈ F
∗
2n , and set

Ft,γ(x) = x−1 + γ Tr
(
xt
)
. (25)

Then δ(Ft,γ) = 4 for any γ such that γ3 = 1 when t = 3, as well as for any γ such that
γ5 = 1 when t = 5.

Proof. Notation is as we stated at the beginning of this section and the method is the
same as for Lemma 6. Here ha is the derivative of x �→ xt in point a and we begin by
computing ha(x) for x /∈ {0, a}. Recall that in this case fa(x) = a(x2 + ax)−1. If t = 3
then

ha(x) = x2a + xa2 + a3 = a2

fa(x) + a3. (26)

If t = 5 then

ha(x) = x4a + xa4 + a5 = a3

(fa(x))2 + a4

fa(x) + a5, (27)

since

x4a + xa4 = a5
(

(x2 + ax)2

a4 + x2 + ax

a2

)
.

Now, according to (19), (15) and (p1)–(p4), we look at the solutions x of

Fa(x) = fa(x) + γ Tr
(
ha(x)

)
= b, b ∈ {1/a, 1/a + γ}. (28)

Note that if x ∈ {0, a} then Tr(ha(x)) = Tr(at). Recall that δ(Ft,γ) = 6 if and only
if either E(a, 1/a) or E(a, 1/a + γ) has 6 solutions. We are going to prove that it is
impossible.

Assume that t = 3. Note that when fa(x) = 1/a, x /∈ {0, a}, we get Tr(ha(x)) = 0,
from (26). This implies that E(a, 1/a+ γ) has at most 4 solutions, since it is impossible
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to have Fa(x) = 1/a + γ with Tr(ha(x)) = 1. Now, E(a, 1/a) has four solutions when
Tr(a3) = 0. These are {0, a} and the two solutions of x2 + ax + a2 = 0.

There are two other solutions if and only if there is x /∈ {0, a} such that fa(x) = γ+1/a
with Tr(ha(x)) = 1. Note that fa(x) = γ + 1/a if and only if

x2 + ax + a2

aγ + 1 = 0, i.e., Tr

(
1

aγ + 1

)
= 0. (29)

But from (26)

Tr
(
ha(x)

)
= Tr

(
a3

aγ + 1 + a3
)

= Tr

(
1

aγ + 1 + a3
)

= 0.

This is because (with γ3 = 1)

a3

aγ + 1 = ((aγ + 1) + 1)3

aγ + 1 = (aγ + 1)2 + (aγ + 1) + 1 + 1
aγ + 1 .

So, it is impossible to have fa(x) = γ + 1/a, with Tr(ha(x)) = 1, x /∈ {0, a}. Hence
E(a, 1/a) has at most four solutions.

Now t = 5. When fa(x) = 1/a, x /∈ {0, a}, we get Tr(ha(x)) = Tr(a5), from (27).
Assume that Tr(a5) = 0. In this case we get four solutions, which are {0, a} and the

two solutions of x2 + ax + a2 = 0, x /∈ {0, a}. We proceed as previously to prove that
there are no other solutions. With fa(x) = γ + 1/a, and assuming (29), we get:

Tr
(
ha(x)

)
= Tr

(
a5

(aγ + 1)2 + a5

(aγ + 1) + a5
)

= Tr

(
1

aγ + 1 + a5
)

= 0,

by expanding

a5

(aγ + 1)� = ((aγ + 1) + 1)5

(aγ + 1)� , for � = 1, 2, where γ5 = 1.

Thus Tr(ha(x)) �= 1, a contradiction.
Now fa(x) = 1/a with Tr(a5) = 1, the case where b = 1/a + γ. We have four

solutions, as above. There are two other solutions when fa(x) = γ + 1/a, assuming (29),
and Tr(ha(x)) = 0. But, in this case

Tr
(
ha(x)

)
= Tr

(
1

aγ + 1 + a5
)

= 0 + 1 = 1,

a contradiction. �
Problem 3. Is there other values of t for which the functions Ft,γ (given by (25)) satisfy
δ(Ft,γ) = 4 for some γ?
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5. Two quadratic monomials

In this section, we study the functions over F2n of the form

F (x) = x2j+1 + γ Tr
(
x2k+1) with gcd(j, n) = 1, γ ∈ F

∗
2n , (30)

where j and k are nonzero integers.

Corollary 5. Let F be given by (30). Then

(i) δ(F ) � 4;
(ii) F cannot be a permutation unless k = j and Tr(γ) = 0.

Proof. The condition on j means that x �→ x2j+1 is an APN function. Thus, (i) comes
from Proposition 1. Proposition 2 implies (ii) when n is even. When n is odd, F can be
a permutation only if

2k + 1 ≡ 2�
(
2j + 1

)(
2i + 1

)
(mod 2n − 1), for some i, �

(see Theorem 3). But this is impossible unless two cases:

– k = j, i = 0. When Tr(γ) = 0, this case provides permutations from Theorem 3(a).
– i = j = 1. This case is treated by Proposition 3. �

5.1. APN or not

In this subsection we study the derivatives of F , that is we consider the functions
x �→ Ga(x) + F (a), a ∈ F

∗
2n , where

Ga(x) = ga(x) + γ Tr
(
ha(x)

)
,

ga(x) = x2j

a + xa2j

, ha(x) = x2k

a + xa2k

. (31)

Note that ga and ha are linear functions so that Ga is linear too. Hence Ga is 2-to-1
if and only if its kernel has dimension 1. Recall that a function is APN if and only if all
its derivatives are 2-to-1. Our goal is to compute the kernel of the functions Ga of the
form (31).

Remark 9. Since x �→ x2j+1 is APN, because j and n are coprime, the function ga is
2-to-1 for every non-zero a. Thus the image set of ga is a hyperplane in F2n , which we
denote Ha. Recall that a hyperplane H in F2n is defined by a unique non-zero λ ∈ F2n

such that H = {y ∈ F2n | Tr(λy) = 0}. Next we determine λ defining Ha. It must hold:

Tr
(
λ
(
x2j

a + xa2j))
= Tr

(
x
(
λa2j

+ (λa)2
n−j))

= 0,
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for all x. Thus λa = λ2j

a22j providing λ = a−(2j+1), and we have:

Ha =
{
y ∈ F2n

∣∣∣ Tr( y

a2j+1

)
= 0

}
.

The next theorem is a binary version of [11, Theorem 6].

Theorem 9. Let L1 : F2n → F2n be a linear function with kernel {0, α} and γ, β ∈ F
∗
2n

with Tr(βα) = 0. Define

L(x) = L1(x) + γ Tr(βx).

Then the kernel K of L has dimension at most 2. Moreover this kernel has dimension 1
if and only if either (i) or (ii) is satisfied:

(i) there exists an element u ∈ F2n satisfying L1(u) = γ and Tr(β u) = 0;
(ii) γ does not belong to the image set of L1.

The next corollary is an instance of the theorem above. We include a sketch of proof
for completeness.

Corollary 6. Let F be given by (30) and Ga by (31).
Then Ga is 2-to-1 if and only if either (i) or (ii) is satisfied:

(i) there exists an element u ∈ F2n such that γ = ga(u) and Tr(ha(u)) = 0;
(ii) γ does not belong to the image set of ga, i.e. Tr(γ/a2j+1) �= 0.

If Ga is not 2-to-1, its kernel has dimension 2.

Proof. We apply Theorem 9 with L1(x) = ga(x), K is the kernel of Ga and β =
a2n−k + a2k , since

Tr
(
ha(x)

)
= Tr

(
ax2k

+ a2k

x
)

= Tr
((
a2n−k

+ a2k)
x
)
.

Because ga is a 2-to-1 function, the kernel of ga is {0, a}. Note that Tr(βa) = 0, since

Tr
((
a2n−k

+ a2k)
a
)

= Tr
(
a2n−k+1 + a2k+1) = 0.

Thus, the result comes directly from Theorem 9. �
Note that, from Remark 9, the fact that γ belongs to the image set of ga means that

Tr(γ/a2j+1) = 0. Also, we know that δ(F ) ∈ {2, 4}. Thus we have directly
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Corollary 7. Let F (x) = x2j+1 + γ Tr(x2k+1) with gcd(j, n) = 1 and k > 0. Then F is
APN if and only if for all a ∈ F

∗
2n

Tr

(
γ

a2j+1

)
= 0 ⇒ Tr

(
u2k

a + ua2k)
= 0, where u2j

a + ua2j

= γ. (32)

Otherwise δ(F ) = 4.

Remark 10. The previous corollary shows that F (x) = x2j+1 + γ Tr(x2j+1) with
gcd(n, j) = 1 is APN for any γ such that Tr(γ) = 0. Moreover such F is a permu-
tation when n is odd (see Corollary 1).

Note that F (x) = (x+γ Tr(x))◦x2j+1, where x+γ Tr(x) is a bijective linear function
and x2j+1 is APN. Hence F (x) is EA-equivalent to x2j+1. Moreover, any function (x +
γ Tr(x)) ◦G(x) is (bijective) APN whenever G(x) is (bijective) APN.

The following result extends Corollary 7. Note that the linear function L (below) can
be obtained in the context of Hilbert’s Theorem, an explanation (and a proof) of which
can be found in [22, Chapter VI, § 6].

Corollary 8. Let F (x) = x2j+1 + γ Tr(x2k+1) with gcd(j, n) = 1 and k > 0. Let μ ∈ F
∗
2n

such that Tr(μ) = 1 and define the linear function L : F2n → F2n by

L(y) =
n−1∑
i=0

y2ij
i∑

�=0

μ2�j

. (33)

Then F is APN if and only if for all a ∈ F
∗
2n such that Tr(γ/a2j+1) = 0, we have

Tr
(
a2k+1((L(A)

)2k

+ L(A)
))

= 0, where A = γ

a2j+1 . (34)

Proof. Suppose that there is u such that u2j

a+ua2j = γ or, equivalently, taking v = u/a,
there is v ∈ F2n as follows

v2j

+ v = γ

a2j+1 . (35)

Since gcd(j, n) = 1, there are only two solutions of (35) if Tr(γ/a2j+1) = 0, namely v

and v+1, and no solution otherwise. Let μ be such that Tr(μ) = 1 and set A = γ/a2j+1.
It is easy to check that if Tr(A) = 0 then v = L(A). Indeed, for any y we have:

(
L(y)

)2j

+ L(y) =
n−1∑
i=0

y2(i+1)j
i∑

�=0

μ2(�+1)j
+

n−1∑
i=0

y2ij
i∑

�=0

μ2�j

=
n∑

y2ij
i∑

μ2�j

+
n−1∑

y2ij
i∑

μ2�j
i=1 �=1 i=0 �=0
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=
n−1∑
i=1

y2ij

μ + y
n∑

�=1

μ2�j

+ yμ

= μTr(y) + yTr(μ).

Thus

(
L(y)

)2j

+ L(y) = y when Tr(y) = 0 and Tr(μ) = 1. (36)

By applying Corollary 7, we obtain that F is APN if and only if for all a ∈ F
∗
2n such

that Tr(A) = 0 we have

Tr
(
au2k

+ a2k

u
)

= Tr
(
a2k+1((L(A)

)2k

+ L(A)
))

= 0,

where A = γ/a2j+1 and u = L(A)a. �
5.2. A special case

To illustrate the results of the previous subsection we propose some complements on
the function x �→ x3 + γ Tr(x9), which is APN for any n with a suitable γ. First we
observe:

Lemma 7. Notation is as in Corollary 8. Assume that k = �j, � > 1. Then, the condi-
tion (34) becomes

Tr

(
a2�j+1

((
γ

a2j+1

)2(�−1)j

+ · · · +
(

γ

a2j+1

)2j

+ γ

a2j+1

))
= 0. (37)

Proof. We simply use that (L(A))2j = L(A) + A:

(
L(A)

)2�j

=
(
L(A) + A

)2(�−1)j

=
(
L(A) + A

)2(�−2)j

+ A2(�−1)j
= · · · . �

Then, we have directly

Proposition 7. Let F (x) = x3 + γ Tr(x9). Then F is APN for all n when γ = 1. When
n is even, F is APN for all γ ∈ F4.

Proof. It comes directly from (37), by replacing j = 1 and k = � = 3. For all a ∈ F
∗
2n

such that Tr(γ/a3) = 0, we must have

Tr

(
a9
((

γ
3

)22

+
(

γ
3

)2

+ γ
3

))
= Tr

(
γ4

3 + a3γ2 + a6γ

)
= 0.
a a a a
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This obviously holds when γ = 1, for any n. But when n is even, it holds also for γ ∈ F4.
Indeed, in this case, we get

Tr

(
γ

a3 + a6(γ4 + γ
))

= 0. �
In Section 3.3, we showed how 2-to-1 functions yield permutations. The function

F (x) = x3 + Tr(x9) is 2-to-1 for odd n.

Proposition 8. Let n be odd. The function

G(x) = x3 + Tr
(
x9 + x3)

is bijective on F2n and satisfies δ(G) = 4.

Proof. The function G is bijective such that δ(G) � 4, from Theorem 5. We compute
the dimension of the kernel of G(x) + G(x + a) + G(a) for any a ∈ F

∗
2n . Consider the

equation

Ga(x) = x2a + xa2 + Tr
(
x8a + xa8 + x2a + xa2) = 0.

First x = 0 and x = a are solutions, for any a. Further, if Tr(a−3) = 0, there is u such
that u2a + ua2 = 1. Since x3 + Tr(x9) is APN, we have in this case Tr(u8a + ua8) = 0
by Corollary 7. Then u and u + a are solutions of

x2a + xa2 + 1 = 0 with Tr
(
x8a + xa8 + x2a + xa2) = 1,

implying that Ga is not 2-to-1 when Tr(a−3) = 0. �
6. Conclusion

In this paper we focused on the permutations introduced in [10,11] which are as sparse
as possible and have a low differential uniformity δ. While it is easy to obtain an upper
bound on δ, it is difficult to give the exact value of δ. In this context, we present new
methods and new tools expecting that they can be used for other kinds of functions too.

The main question remained open whether do exist new classes of APN functions of
form xs+γ Tr(xt). We are more precise in the paragraph below. There is the remarkable
class of functions x �→ x3 + Tr(x9), and few sporadic examples. Our studies and our
numerical results lead us to conjecture that there is no other infinite class of such APN
functions.

Another open problem is the determination of the Walsh spectrum of functions of type
xs + γ Tr(xt). Little is known about this, especially for such non-quadratic functions.
This problem is difficult since it is related to finding the spectrum of Boolean functions
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including two monomials, or with the weight enumerator of cyclic codes with three zeros.
This appears clearly when one studies the component functions (see Section 3.2).

Further functions Fs,t,γ . The set of functions Fs,t,γ on F2n is very rich. It is of interest to
identify specific sets of integers s and t yielding such functions with particular properties.
For example it would be interesting to study the properties of functions

Fj,i,γ(x) = x2j+1 + γ Tr
(
x(2i+1)(2j+1)),

where x �→ x2j+1 is a permutation on F2n . It is easy to see that the algebraic degree d

of Fi,j,γ is

d =

⎧⎪⎨
⎪⎩

4 if i �= j,

3 if i = j with 1 < j < n/2,
2 if i = j = 1.

It is worth to note that with i = j = 1 we get the APN function x �→ x3 + γ Tr(x9)
which is not a permutation.

Another interesting choice for s would be the so-called Kasami exponent. Recall that
the integers

d = 22i − 2i + 1 (mod 2n − 1), 1 � i � n− 1,

are called Kasami exponents and the corresponding power functions on F2n

Kd(x) = xd

are called Kasami functions. The Kasami exponents yielding permutations on F2n are
characterized in [21, §3.1]. Let d = 22i − 2i + 1, then the set of functions

Fi,γ = xd + γ Tr
(
x23i+1)

includes permutations with low differential uniformity. Again, we would like to remark
that with i = 1 we get the function x3 + γ Tr(x9).
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